углубленные знания в области машинного обучения, интеллектуального анализа данных, рекомендательных систем,
знания математической статистики и теории вероятности,
понимание современных методов и алгоритмов машинного обучения деревья решений, случайный лес, нейронные сети, ближайшие соседи и др.,
опыт разработки моделей машинного обучения на Python 2+ года,
владение SQL, понимание процесса ETL,
английский не ниже Pre-Intermediate чтение и понимание технической документации.
Знания в области машинного обучения, интеллектуального анализа данных
Знания математической статистики и теории вероятности
Опыт разработки ML- моделей на Python не менее 6 мес.
Владение SQL
3+ years professional experience in Machine Learning;
Industry experience in development and deployment Machine Learning based models to production;
Proficiency with machine learning frameworks like TensorFlow/Bert/Sklearn;
Proficiency with Deep Learning algorithms and packages;
Familiar with CI/CD practices (GitHub actions, Jenkins, AWS Code Pipeline, etc);
English – Intermediate +.
Master’s degree in Computer Science, Engineering or relevant field;
Programming experience in C++, Python and MATLAB;
Familiarity with software development concepts (version control, code review, continuous integration);
Good problem-solving skills;
English - Intermediate.
Master's or PhD degree in a relevant domain (math statistics, math modelling, computer science, etc.);
Deep expertise in Python development. Knowledge of basic data structures and algorithms;
Good knowledge in classical machine learning algorithms, deep learning, modern neural network approaches;
Knowledge of ML frameworks and libraries (more - better): Tensorflow, Keras, Pytorch, Caffe2, scikit-learn, numpy, matplotlib, OpenCV, word2vec.
LP, chatbots development, text content understanding;
Object detection and tracking. -Gesture recognition, scene understanding, movement/action prediction. Semantic segmentation and instance semantic segmentation;
Timeseries analysis: forecasting, clustering and classification;
Data preparation: raw data annotation and labeling, data augmentation and normalization.
• 3+ year experience with Python (statistical and ML packages), advanced knowledge of SQL;
• Understanding theoretical concepts of statistics/probability, machine learning (not just training models);
• Experience in implementing data science to achieve commercial goals;
• Excellent business understanding, problem-solving abilities, and organizational skills;
• Ability to build meaningful visualizations of results.